| 程式人 | 林信良 | 程式學習 | Code+CAD | OpenSCAD | Computer-Aided Design

Code+CAD的選擇

目前如果要使用程式碼進行CAD的設計,能選擇的方式很多,而且應用上日漸成熟

2021-09-16

| 程式人 | 林信良 | 程式學習 | 感知器 | 神經網路 | 核方法 | Kernel method

從感知器到神經網路

神經網路是一堆感知器的組合,由一堆單純運算來達成複雜的任務,多從運算組合的本質來思考神經網路,可避免迷失於繁雜的公式推導

2021-09-09

| K-means | 分群 | Clustering | 資料分析 | 程式人 | 林信良 | 程式學習 | 機器學習 | ML | 非監督式學習

畫分勢力範圍的K-means

在非監督式的K-means分群方式下,無論是勢力範圍、群數的衡量等,都是以距離作為依據,同一勢力範圍內的資料,必要時,也可以使用群心來加以代表

2021-09-02

| 程式人 | 林信良 | 程式學習 | 貝氏分類 | 機器學習

從疾病檢驗到單純貝氏分類

在各種分類方法當中,面對基於貝氏定理的單純貝氏分類,我們可以從生活實例理解,像是疾病檢驗、垃圾郵件、氣象,進一步地抽取現象的特徵作為計算

2021-08-12

| 程式人 | 林信良 | 程式學習 | 影子遊戲 | 主成分分析

從影子遊戲到主成分分析

關於資料的處理,可能會透過降低維度的方式來進行,但重點或許在於理解資料在不同維度的樣貌

2021-07-29

| 程式人 | 林信良 | 程式學習 | 機器學習

漫談機器學習入門

身為想了解機器學習的開發者,若要瞭解原始碼實現方式,背後數學原理,該如何進入這個領域?我們能以向量運算、矩陣運算、微積分等來思考,將數學與程式的心智模型結合

2021-07-22

| 程式人 | 林信良 | 程式學習 | 迴歸 | 感知器

淺談迴歸與感知器

透過迴歸(Regression),我們可以進行預估,而所謂的感知器(Perceptron),則與分類有關,我們可基於人類大量觀察的要點來建立

2021-07-16

| 傅立葉轉換 | 影像處理 | 程式人 | 林信良 | 程式學習

傅立葉轉換與影像處理(中)

對圖像雜訊而言,有高頻與低頻之別,就灰階圖像而言,灰階值就像訊號的振幅值,像素的間距,就好比時間的間距。若想更清楚認識圖像頻率的意義,我們可透過傅立葉轉換的實作來進行

2021-07-02

| Matplotlib | 3D建模 | 程式人 | 林信良 | 程式學習

Matplotlib玩3D建模

以Matplotlib來進行2D繪圖之餘,我們也可以用它來執行3D繪圖,若要將其做為3D建模工具,讓這類非典型的應用是有可能實現的,而且,還可以發掘更多實用的功能

2021-05-20

| Numpy | 索引陣列 | list | 程式人 | 林信良 | 程式學習

巧用NumPy索引

NumPy陣列提供與list相同的索引方式,但並非使用了NumPy,資料處理速度就會自動躍進,開發者須改變思考方式,才能善用NumPy陣列的效能優勢

2021-04-29

| 王氏磚 | Wang tiles | 拼接應用 | 程式學習 | 程式人 | 林信良

趣拼王氏磚

王氏磚是藉由鄰接邊的共同編碼,直接對應至拼接塊,沒有搜尋、不用評估、一定可以拼接,略加變化,也會有無限拼接的可能性

2021-04-01

| 程式人 | 林信良 | 程式學習 | Voronoi | Delaunay | 幾何結構

Voronoi與Delaunay

Voronoi圖案代表著勢力均衡,Delaunay三角分割代表著一組特徵點不重複的獨立三角區域,這兩種圖形之間有著相當密切的關係,它們各自有哪些演算方式與幾何特性?

2021-03-03